
Using Subobservers to Synthesize Opacity-Enforcing

Supervisors

Richard Hugh Moulton1, Behnam Behinaein Hamgini1, Zahra Abedi Khouzani1,
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Abstract

In discrete-event system control, the worst-case time complexity for computing a system’s
observer is exponential in the number of that system’s states. This results in practical diffi-
culties since some problems require calculating multiple observers for a changing system, e.g.,
synthesizing an opacity-enforcing supervisor. Although calculating these observers in an itera-
tive manner allows us to synthesize an opacity-enforcing supervisor and although methods have
been proposed to reduce the computational demands, room exists for a practical and intuitive
solution. Here we extend the subautomaton relationship to the notion of a subobserver and
demonstrate its use in reducing the computations required for iterated observer calculations.
We then demonstrate the subobserver relationship’s power by simplifying state-of-the-art syn-
thesis approaches for opacity-enforcing supervisors under realistic assumptions.

1 Introduction

Discrete-event systems (DES) research has recently focused on opacity, a system property that
ensures that secret information cannot be distinguished from non-secret information. The literature
includes methods for verifying if a system is opaque, namely, whether a hostile agent could—based
on its observations—determine whether or not the system is in a secret state, or whether or not the
system has generated a secret event sequence. A natural question to ask if a system is not opaque
is “how can we make this system opaque?” One approach is to alter which events are visible to an
adversary, however this is rarely in the power of the system designer. An alternative approach is to
use supervisory control to disable event occurrences so that the controlled system is opaque [10].

Researchers have examined opacity-enforcing supervisors under various assumptions [1, 2, 7,
22, 23, 26, 27]. The näıve method of producing such a supervisor starts by constructing a plant
automaton representing the system and an observer automaton capturing the adversary’s view of
the system based on which events the adversary can observe. The standard method for constructing
an observer automaton relies on converting a nondeterministic finite automaton to a deterministic
finite automaton (NFA-to-DFA conversion) [9], which is known to require asymptotic computing
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time that is exponential in the number of states of the plant. Although supervisory control can
then restrict plant behaviour to enforce opacity, a control-aware adversary will then be able to
revise its plant estimates. As a result, repeated plant evolution necessitates repeated NFA-to-DFA
operations. In this paper we present a method for synthesizing an opacity-enforcing supervisor that
relies on only one NFA-to-DFA operation on the states of the uncontrolled plant.

Although we motivate our approach with the problem of plant evolution due to supervisory
control, it is more generally a method for tracking the joint behaviour of a plant and an observer
through multiple steps of plant evolution, without computing an observer at each intermediary
stage. In addition supervisory control, a plant may evolve over time for other reasons as well.
For example, a discrete-event process may be a naturally time-varying dynamic discrete-event
system [8], may require online control [6], or may be best modelled by a time-varying automaton
because more becomes known about the process over time. Alternatively, a discrete-event process
may be controlled by a number of decentralized agents with different views of the plant, [13], where
controls enacted by one agent may allow another agent to update its own estimates of the plant.

The power of our approach is that it leads to efficient and intuitive computations. In the
remainder of this paper we review previous approaches to the opacity control problem, we introduce
the subobserver property and show that it can be used to incrementally refine the joint behaviour
of a plant and an observer, and, finally, we demonstrate how this approach can be used to efficiently
synthesize an opacity-enforcing supervisor.

2 Problem Definition and Related Works

To lay the theoretical foundation for our contribution, we introduce the formalisms of DES, define
the opacity control problem, and review the literature for related concepts and methods.

2.1 Discrete-event systems

DES are used to model processes that are discrete, asynchronous and potentially nondeterminis-
tic [16]. The discrete nature of these systems is captured with an automaton: at any given time
the system is in a specific state and the system moves between states via event-based transitions.

Mathematically, a DFA G is a 5-tuple (Q,Σ, δG, q0, Qm) where Q is the finite set of states
in the system, Σ is the finite alphabet of events that can occur, δG : Q × Σ → Q is a partial
function, q0 ∈ Q is the initial state, and Qm ⊆ Q is the set of marked states. From a control
theory perspective the automaton G represents the plant, or underlying process, to be controlled.
The alphabet Σ represents the events that can occur within the plant and can be divided into
disjoint sets by considering whether individual events are controllable or uncontrollable (Σc and Σuc
respectively) and whether they are observable (Σo and Σuo respectively). The transition function
δG leads inductively from single events to the language L(G), which is the plant’s full range of
behaviour. Because δG is usually a partial function, we use the notation δG(q, σ)! to denote that
a specific transition δG(q, σ) is defined. We will also use the notation 〈q′, σ, q〉G to denote that
δG(q′, σ) = q. The set of marked states may represent the completion of a process or, in our case,
a set of distinctive states that we wish to keep indistinguishable to an adversary. In this paper we
call these “secret states.”

A particular DFA representation of a language induces a binary relation called the equiresponse
relation (Definition 1, from Lin and Wonham [14]) on Σ∗, the Kleene closure of Σ. The equiresponse
relation for a DFA associates strings with the states they lead to, so that two strings are related
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if they lead to the same state. Because the equiresponse relation is a right congruence on Σ∗, it
is also an equivalence relation and, like all equivalence relations, defines a partition. We note that
different DFA representations of a language will induce different equiresponse relations and there
is no canonical equiresponse relation.

Definition 1 (Equiresponse relation). Given an automaton G = (Q,Σ, δG, q0, Qm), the equire-
sponse relation of G is a right congruence eq(G) on Σ∗ and defined by

s ≡ s′ mod eq(G) ⇐⇒ δG(q0, s) = δG(q0, s
′)

and if δG(q0, s) is undefined then δG(q0, s) = δG(q0, s
′) if and only if δG(q0, s

′) is undefined as well.

2.1.1 Observing discrete-event systems

When an automaton contains unobservable events, an observer automaton can be used to capture
an agent’s beliefs about the system. This observer automaton can be computed by transforming
the original automaton, first by substituting the empty string ε for all transitions whose events are
not in Σo [4, p. 76], and then performing NFA-to-DFA conversion [4, pp. 87-90]. Note that we do
not use the standard marking associated with NFA-to-DFA conversion (whereby a subset labelling
a state in the DFA is marked if any element in the subset is marked in the original NFA); rather,
we mark a state in the DFA only if all elements of the subset label are marked states in the original
NFA. As will be discussed in Section 5.1, this way of marking states in the observer automaton will
distinguish states in which an adversary can be sure that the original system is in a secret state.

Throughout this paper we denote the transformation of an automaton to an observer automaton
with respect to the alphabet Σo by TΣo

(·); we denote the associated change in languages generated
by these automata as the projection PΣo

(·) (Definition 2, from Cassandras and Lafortune [4, p. 57]).

Definition 2 (Projection of strings). For an alphabet Σ and another alphabet Σo ⊆ Σ, we define
the projection PΣo

: Σ∗ → Σ∗o recursively as follows:

PΣo(ε) = ε

PΣo
(σ) =

{
σ if σ ∈ Σo

ε if σ ∈ Σ \ Σo

PΣo
(sσ) = PΣo

(s)PΣo
(σ) for s ∈ Σ∗, σ ∈ Σ

The projection operation implicitly defines an equivalence relation over Σ∗, where two strings s
and s′ are related if they share a projection, PΣo

(s) = PΣo
(s′). Each cell in the associated partition

contains those strings whose projections are equal. Different projections will define different par-
titions on Σ∗ and we say that one partition refines another partition if it continues to distinguish
between all elements that the latter partition distinguishes between (Definition 3) [17, Ch. 9].

Definition 3 (Refinement of a partition). Let ρ1 and ρ2 be binary relations on a set X. We say
that ρ1 refines ρ2, or that ρ2 is coarser than ρ1, denoted ρ1 ≤ ρ2 if

(∀x, y ∈ X) (x, y) ∈ ρ1 =⇒ (x, y) ∈ ρ2.
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2.1.2 Controlling discrete-event systems

In addition to observing DES processes, we can also control them. In DES the controller that
modifies which events can occur in a plantG is called the supervisor and is formally a pair S = (S, φ).
Here, S = (X,Σ, ξ, x0, Xm) is a DFA that shares an alphabet with G but has a different state space,
transition function and set of marked states [16]. The second component of the pair, φ : X → Γ, is
a state feedback map that maps supervisor states, x ∈ X, to control patterns γ ∈ Γ,

γ := φ(x) ∈ {0, 1}Σ.

These control patterns indicate whether the supervisor will enable an event, denoted by 1, or disable
it, denoted by 0, with the requirement that no uncontrollable event can be disabled. The controlled
DES process is then represented by the supervisor composed with the plant and is denoted by

S/G = Ac(X ×Q,Σ, ξ × δ, (x0, q0), X ×Qm)

where Ac is a function that restricts an automaton to its accessible portion: those states that
can be reached from the initial state via a string in the automaton’s language [16]. A control
pattern can also be defined using the supervisor’s transition function, where an event σ is enabled
in φ(x) if ξ(x, σ)! and it is disabled otherwise. A great amount of work exists in the literature for
determining whether a system is controllable, whether a system is observable, and how to synthesize
supervisors [4, 24].

2.2 The notion of opacity

When we talk about the opacity property of a system, we use the plain language meaning of an
opaque system. That is, we say that a system is opaque if an observer of the system is unable
to unambiguously determine some characteristic of that system. Mazaré formalized this notion of
opacity for computer science and showed that under this definition it is decidable whether or not a
particular system property is opaque [15]. Formulating this notion of opacity for transition systems,
Bryans et al. used epistemic logic and possible world models to frame opacity as the inability of an
observer to determine the truth of a particular predicate related to the system [3].

Building on this work, Saboori and Hadjicostis characterized a number of state-based opacities
for DES including initial state, k-step, and infinite step opacities [19, 20, 21]. Alternatively, Lin
considered opacity to be a broader concept than Bryans et al. and defined opacity in terms of
languages, distinguishing between strong and weak opacity in terms of the degree to which strings
in one language are confused by an observer with strings in another language [12].

More recently, Wu and Lafortune unified four common kinds of opacity: language-based, initial-
state, current-state, and initial-and-final-state. They considered a problem setup where adversaries
had full knowledge of the system’s structure but only partial observations of its behaviour. Their key
result was a set of polynomial-time algorithms for transforming each of these four kinds of opacity
into the other under the authors’ problem formulation. The one exception to this is that language-
based opacity cannot be transformed into initial-state opacity if either the secret or non-secret
language is not prefix-closed [25]. Without loss of generality, therefore, we consider in this paper
the problem of enforcing current-state opacity, which we define in line with Wu and Lafortune [25].

Definition 4 (Current-state opacity). Given a plant G = (Q,Σ, δ, q0, Qm), a projection PΣo
, and

a disjoint sets of secret states QS ⊆ Q and non-secret states QNS ⊂ Q, QS ∩ QNS = ∅, G is
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current-state opaque if for every string that leads from an initial state to a secret state, there exists
a string that leads from an initial state to a non-secret state and these two strings have identical
projections.

∀ s ∈ L(G) such that δ(q0, s) ∈ QS ,
∃ t ∈ L(G) such that δ(q0, t) ∈ QNS and PΣo(s) = PΣo(t)

2.3 Enforcing opacity through supervisory control

It is natural to want to ensure that a given system satisfies our well-defined notion of opacity. This
problem has been addressed in the literature in many different forms, in this paper we name it the
opacity control problem. This problem is defined by a set of general parameters [3, 7]:

1. the set of events that are observable and controllable for the supervisor (Σs and Σc respec-
tively);

2. the set of events that are observable by the adversary (Σa);

3. the secret and type of opacity to enforce; and

4. the adversary’s knowledge of any supervisory control policy.

Since the supervisor and adversary each have a set of observable events, we label these Σs and
Σa respectively to avoid ambiguity. The most general formulation of the opacity control problem
assumes no relationship between Σs, Σc, and Σa. Other reasonable relationships to assume between
these three sets is that the adversary sees a subset of the events that the supervisor does, Σa ⊆ Σs,
that the supervisor can only control events that it can see, Σc ⊆ Σs, and that the system contains
only events that are controllable and observable by the supervisor, Σc = Σs = Σ. Regardless of the
specific relationship between event sets, the most principled way to approach the opacity control
problem is to consider an adversary that is aware of the supervisor’s control policy and thereby
avoid any appeals to security through obscurity. In this paper we use the formulation given in
Problem 1.

Problem 1 (Opacity Control Problem). Given a DFA G = (Q,Σ, δ, q0, Qm) where Qm is the set
of secret states, an alphabet of events the supervisor can observe Σs ⊆ Σ and an alphabet of events
the supervisor can control Σc ⊆ Σs. Given an supervisor-aware adversary and an alphabet of
events that it can observe Σa ⊆ Σs. Find a supervisor S such that the closed-loop behaviour of
the plant composed with the supervisor, S/G, is current-state opaque with respect to the alphabet
observable by the adversary, Σa, the set of secret states QS = Qm, and the set of non-secret states
QNS = Q \Qm.

The näıve solution for this formulation is to iteratively calculate the adversary’s view of the plant,
apply supervisory control, and then check the opacity of the controlled system until a fixed point is
reached. This approach has been noted by multiple authors and dismissed as very computationally
expensive due to the fact that an observer automaton must be calculated for every iteration [7, 21].
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2.4 Other approaches to the Opacity Control Problem

The opacity control problem has been addressed in the literature under different assumptions. In
some works the adversary is unaware of the supervisor, while in others the adversary has complete
knowledge of the supervisor’s control policy. We consider the latter case, since this introduces the
requirement to iteratively calculate the supervisor’s control policy and the adversary’s estimate of
the plant; Table 1 summarizes the characteristics of these works.

Reference Approach Event Sets Opacity Type

[1] Sub-lattice of kernels Σa ⊆ Σs Language-based
Σc = Σ

[22] Supremal closed, controllable, and opaque sublan-
guage

Σa ⊆ Σs Language-based

Σc ⊆ Σs
Σs = Σ

[2] Supremal controllable, observable, and opaque lan-
guage

Σa = Σs Language-based

Σc ⊆ Σs

[7] Condensed state estimates Σa ⊆ Σs Current-state
Σc ⊆ Σs

[26] All-Inclusive Controller for Opacity Σa ⊆ Σs Current-state

[27] All-Enforcement Structure Σa = Σs Current-state

[23] Augmented I-observer – Current-state

This paper Plant behaviour composed with the adversary’s view Σa ⊆ Σs Current-state
Σc ⊆ Σs

Table 1: Comparing opacity control problem formulations with a supervisor-aware adversary. Σ is
the set of all events, Σc is the supervisor’s set of controllable events, Σs is the supervisor’s set of
observable events, and Σa is the adversary’s set of observable events.

Addressing language-based opacity, Badouel et al. presented an iterative method to design
a supervisor that guaranteed concurrent opacity assuming there are no uncontrollable events in
the plant [1]. Takai and Oka proposed a method with one-step convergence under the strong
assumption that, for any pair of indistinguishable strings, any uncontrollable and observable event
that can occur after one string can occur after the other [22]. Finally, Ben-Kalefa and Lin iteratively
enforced opacity and controllability for the language generated by the plant [2]. This is the näıve
approach applied to languages and still requires the construction of a supervisor to enforce the final
language produced.

Considering current-state opacity, Yin and Lafortune presented the All-Inclusive Controller for
Opacity [26] and the All Enforcement Structure [27], which both embed a game between supervisor
and plant in a bipartite transition structure where the supervisor’s goal is to enforce the specified
property and the plant’s is to violate the specified property. More similar to our approach to the
opacity control problem are condensed state estimates, [7], and the augmented I-observer, [23].

Dubreil et al. showed that solving the opacity control problem under full observation induces
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a general solution to the opacity control problem when Σa ⊆ Σs [7]. Their approach to enforcing
opacity through supervisory control produces an automaton whose states track the plant’s actual
state as well as condensed state estimates, which contain the set of states that the adversary believes
the plant could be in if the last transition it observed was the last transition that occurred in the
plant. From the condensed state estimates, the supervisor then reasons about “loosing paths,”
which are the traces from the current state that would lead to the disclosure of a secret [7].

Our approach to the opacity control problem is inspired by the condensed state estimates
method, which we improve upon in two ways. First, the parallel composition between the plant and
an observer represent the adversary’s beliefs about the plant more intuitively than condensed state
estimates do. Second, our representation of the adversary’s beliefs removes the need for unrolling
condensed state estimates to determine whether a particular string will disclose a system secret.

Finally, Tong et al.’s augmented I-observer is the parallel composition between the plant and the
observer representing the adversary’s view of the plant [23]. The supremal G-opaque sublanguage
– a language-based property equivalent to current-state opacity – is computed and a supervisor
synthesized to enforce it as a specification [23, Definition 7]. This process iterates until the system’s
generated language is G-opaque, i.e., the system is current-state opaque. The augmented I-observer
method allows Σa and Σs to be incomparable, but Tong et al. restricted the majority of their
discussion to non-supervisor-aware adversaries. With a supervisor-aware adversary, this generality
comes with the additional computational cost of updating both the plant and augmented I-observer
at every step of the iteration. With the reasonable assumption that Σa ⊆ Σs, our method is able
to simply refine the parallel composition of the plant and adversary’s view instead.

3 Relating Observers: Subautomata versus Subobservers

The key to our method is that we are able to relate each successive observer automaton to the one
that came before it. To begin, when supervisory control is applied to enforce a regular-language
specification for an automaton G, the controlled system can be modelled as another automaton, G′.
We begin, therefore, with an understanding that there is a relationship between G and G′. This
is the subautomaton relationship, a general relationship that goes beyond supervisory control [4,
p. 86].

Definition 5 (Subautomaton). We say that G′ = (Q′,Σ, δG′ , q′0, Q
′
m) is a subautomaton of

G = (Q,Σ, δG, q0, Qm), denoted by G′ v G, if

δG′(q′0, s) = δG(q0, s) ∀ s ∈ L(G′)

The subautomaton relationship is a strong form of correspondence between two automata. It
allows us to reason, for example, that the states of G′ are a subset of those in G, that the initial
state in G′ is the same as in G, and, more generally, that we can match the states in G′ with a
corresponding state in G [4, p. 86]. This relationship can be very helpful when reasoning about the
language produced by each automaton or about termination conditions for certain algorithms.

When the specification of legal behaviour is a subautomaton of G, the resulting automaton G′

will also be a subautomaton of G. Although the idea of a specification is not directly applicable to
the opacity control problem, we demonstrate in Section 5.3 how our proposed method inherently
ensures that supervisory control produces a subautomaton at each iteration.

Beyond the relationship between the uncontrolled and controlled plant, we are interested in how
an adversary’s observations of a system evolve as supervisory control is enacted. We would like to
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Figure 1: We wish to characterize the relationship that exists between H ′ and H.

know whether or not we can establish a relationship between the observer automata H ′ and H,
transformations of G′ and G respectively with respect to the same alphabet of observable events
(Figure 1). Does the subautomaton relationship survive the transformation; is H ′ a subautomaton
of H? More formally, is it true, given automata G, G′, H := TΣo

(G) and H ′ := TΣo
(G′), that

G′ v G =⇒ H ′ v H?

Unfortunately this statement is not true because H ′ and H will have their states coming from
2Q

′
and 2Q respectively, allowing for the possibility that states in H ′ will not properly match up

with states in H (Figure 2). Although the transition graph of any subautomaton is necessarily a
subgraph of the parent automaton’s transition graph, the same is not true for automaton related
by the subobserver property since states may be “split” from H to H ′. Even if we avoid this, the
state labels in H and H ′ are semantically meaningful, namely they encode the adversary’s belief
about the state of the system, and these semantics would be lost if we allowed, for example, the
state labelled {5} to be matched with the state labelled {5, 6}.

All is not lost, however. Given our insistence that state labels carry semantic meaning, we can
relax the definition of subautomaton to allow for this and produce a relationship that is suitable to
relate two observers together. We call this the subobserver relationship, Definition 6.

Definition 6 (Subobserver). We say that G′ = (Q′,Σ, δG′ , q′0, Q
′
m) is a subobserver of G =

(Q,Σ, δG, q0, Qm), denoted G′ ṽ G, if

δG′(q′0, s) ⊆ δG(q0, s) ∀ s ∈ L(G′).

Because we parallel the definition of a subautomaton in our definition of a subobserver it im-
mediately follows that all subautomaton relationships are also subobserver relationships and that
the converse is not true. We claim that the subobserver property does complete the relationships
between automata G, G′, H, and H ′ seen in Figure 1.

Before proving this result formally, we begin by establishing some technical notes. To begin,
throughout our proofs we will define automata in terms of G. Specifically, G′ is a subautomaton of
G and H ′ := TΣo(G′) and H := TΣo(G) are observer automata with our characteristic marking.

G = (Q,Σ, δ, q0, Qm)

G′ = (Q′,Σ, δ′, q0, Q
′
m)

H = TΣo
(G) = (2Q,Σo, δH , q0h, Qmh)

H ′ = TΣo
(G′) = (2Q

′
,Σo, δH′ , q0h′ , Qmh′)

Next, we define a state’s ε-reach as the set of states that can be reached from it via the empty
string (Definition 7) [4, p. 71].
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Figure 2: Counterexample showing that H ′ is not a subautomaton of H. Initial states are denoted
by a small arrow; marked states are denoted with a double ring. Observable events have a solid
arrow and unobservable events have a dashed arrow. Controllable events have marks across their
arrows.

Definition 7 (ε-reach). For an automaton G and projection PΣo
, we call the set of states that can

be reached from state q via a string whose projection is ε as the ε-reach of q. Formally,

εRG(q) := {q′ ∈ Q | ∃ s ∈ Σ∗, PΣo
(s) = ε, δ(q, s) = q′}.

By definition a state is always in its own ε-reach, q ∈ εR(q).

We also show that if G′ v G then a state’s ε-reach in G′ is a subset of that state’s ε-reach in G.

Lemma 1 (The ε-reach of any state in a subautomaton is a subset of that state’s ε-reach in the
parent automaton). Given automata G = (Q,Σ, δG, q0, Qm) and G′ = (Q′,Σ, δG′ , q0′ , Q′m). Then

G′ v G =⇒ εRG′(q) ⊆ εRG(q) ∀ q ∈ Q′.

Proof. To begin, G′ v G implies that Q′ ⊆ Q. We can therefore determine the ε-reach of state q

9



with respect to both G and G′ for all q ∈ Q′.

εRG′(q) ={q′ ∈ Q′ | ∃ s ∈ Σ∗, PΣ(s) = ε, δG′(q, s) = q′}
⊆{q′ ∈ Q′ | ∃ s ∈ Σ∗, PΣ(s) = ε, δG′(q, s) = q′}
∪ {q′ ∈ Q′ | ∃ s ∈ Σ∗, PΣ(s) = ε, δG(q, s) = q′,¬δG′(q, s)!}
∪ {q′ ∈ Q \Q′ | ∃ s ∈ Σ∗, PΣ(s) = ε, δG(q, s) = q′} by set inclusion

={q′ ∈ Q | ∃ s ∈ Σ∗, PΣ(s) = ε, δG(q, s) = q′}
=εRG(q)

We are now ready to prove that the relationship between the observer automata H and H ′ (the
dashed line in Figure 1) is the subobserver relationship defined in Definition 6.

Theorem 1 (The transformation of a subautomaton is itself a subobserver). Given automata G
and G′ and their respective transformations, H := TΣo

(G) and H ′ := TΣo
(G′). Then

G′ v G =⇒ H ′ ṽ H.

Proof. The proof proceeds by induction.
Base case: s = ε, |s| = 0.

q0h′ = εRG′(q0)

⊆ εRG(q0) by Lemma 1

= qoh

Inductive Hypothesis: Suppose s ∈ L(H ′), |s| = n, and Q̄′ = δH′(q0h′ , s) ⊆ δH(q0h, s) = Q̄.
Inductive Step: Now we show that for sσ ∈ L(H ′), |sσ| = n + 1, then δH′(q0h′ , sσ) ⊆

δH(q0h, sσ).
We proceed by translating the set of states δH′(q0h′ , sσ) into set builder notation and then

adding well-chosen states to produce the set of states δH(q0h, sσ).
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δH′(q0h′ , sσ) =δH′(Q̄′, σ) by definition in our IH

=
⋃
q′∈Q̄′

δG′ (q′,σ)!

εRG′(δG′(q′, σ)) by definition of H ′

⊆
⋃
q′∈Q̄′

δG′ (q′,σ)!

εRG(δG′(q′, σ)) by Lemma 1

⊆
⋃
q′∈Q̄′

δG′ (q′,σ)!

εRG(δG′(q′, σ)) ∪
⋃
q′∈Q̄′

¬δG′ (q′,σ)!,δG(q′,σ)!

εRG(δG(q′, σ)) by set inclusion

⊆
⋃
q′∈Q̄′

δG′ (q′,σ)!

εRG(δG′(q′, σ)) ∪
⋃
q′∈Q̄′

¬δG′ (q′,σ)!,δG(q′,σ)!

εRG(δG(q′, σ)) ∪

⋃
q∈Q̄\Q̄′

δG(q,σ)!

εRG(δG(q, σ)) by set inclusion

=
⋃
q′∈Q̄′

δG′ (q′,σ)!

εRG(δG(q′, σ)) ∪
⋃

q∈Q̄\Q̄′

δG(q,σ)!

εRG(δG(q, σ)) combining the last two terms

=
⋃
q∈Q̄

δG(q,σ)!

εRG(δG(q, σ)) since by IH Q̄′ ⊆ Q̄

=δH(Q̄, σ)

=δH(q0h, sσ) by definition in our IH

Having proven Theorem 1, we can relate our four automata from Figure 1: G′ is a subautomaton
of G, H ′ and H are transformations of G′ and G respectively, and H ′ is a subobserver of H.

4 Updating the Observer Automaton

An adversary’s view of a plant is tied to the plant’s structure, so we explicitly link the adversary’s
plant estimate and the plant’s actual state through the parallel composition of their respective
automata (Definition 8 [4, p. 80]).
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Definition 8 (Parallel Composition). Given two automata G1 = (Q1,Σ1, δ1, q01, Qm1) and G2 =
(Q2,Σ2, δ2, q02, Qm2), their parallel composition is defined as:

G1 || G2 =Ac(Q1 ×Q2,Σ1 ∪ Σ2, δ12, (q01, q02), Qm1 ×Qm2)

where δ12((q1, q2), σ) =


(δ1(q1, σ), δ2(q2, σ)) if σ ∈ Σ1 ∩ Σ2

(δ1(q1, σ), q2) if σ ∈ Σ1 \ Σ2

(q1, δ2(q2, σ)) if σ ∈ Σ2 \ Σ1

undefined otherwise

The parallel composition G || H, contains all of the information required to track the evolution
of the plant’s behaviour and the adversary’s beliefs about the plant. We will denote states in G || H
using the notation q

A where q is a state in G and A is a state in H. It is useful to observe that
a state q

A is accessible in G || H if and only if there is a string s ∈ L(G) that leads to state q in
G and whose projection leads to estimate A in H (Lemma 2). As a corollary to this Lemma, if a
state q

A is accessible in G || H then the state q is an element of the estimate A.

Lemma 2. Given the parallel composition G || H where G = (Q,Σ, δG, q0, Qm) is a DFA and
H := TΣo

(G) is an observer automaton. A state q
A is accessible in G || H if and only if

(∃s ∈ L(G))(δG(q0, s) = q)((∀s′ ∈ L(G) | PΣo(s) = PΣo(s′))(δG(q0, s
′) = q′ ∈ A)).

Proof. See the Appendix.

The parallel composition has strong properties; first, it follows that L(G || H) = L(G) [11].
More interesting is that the accessible states of TΣo

(G || H) are pairwise disjoint sets of states of
G || H, i.e., every state in G || H belongs to one and only one state in TΣo

(G || H). An automaton
that satisfies this property is a state-partition automaton (SPA). The SPA property allows for
simple refinement operations, but we will not explicitly use it as Cho and Marcus used it, [5], since
exploiting the SPA property would require a second transformation operation, TΣo(G || H), and
would introduce additional preprocessing overhead to our algorithms.

4.1 Using the subobserver property

We are given the parallel composition of a plant, G, and an adversary’s view of that plant, H.
Given that the plant’s behaviour has been restricted, the REFINE algorithm (Algorithm 1) returns
the parallel composition of the restricted plant and the adversary’s updated view of the plant
without explicitly calculating this adversary view. To begin, we remove states from the parallel
composition that should be made inaccessible. Next, we account for the adversary’s ability to
reason about the restricted plant. If there is a string s in L(G) that is no longer possible in G′,
then the adversary cannot confuse other strings in L(G′) with s. We must therefore remove the
state that s leads to in G from estimates where the adversary confused s with other strings.

To simplify our reasoning, we assume that the plant G and the parallel composition G || H have
isomorphic state transition diagrams. Although this is not always the case, we will demonstrate
in Section 5.3 that the parallel composition operation inherently creates an automaton Ĝ that is
language equivalent to G and whose state transition diagram is isomorphic with that of G || H.
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Data: Automaton G || H, ∆, a list of states to make inaccessible in G || H.
Result: An automaton M , the accessible portion of G′ || H ′.

1 M = G || H;
/* Ar(A) is a set of states that should be removed from the adversary’s

estimate A. */

2 Initialize Ar(·) as ∅ for each estimate;
/* Determine from ∆ if any other states should be made inaccessible */

3 ∆Q = ∆ ;
4 while ∆Q is not empty do

5 foreach transition leading into q
A , t = 〈 q

′

A′ , σ,
q
A 〉M do

6 if σ ∈ Σuc then the transition t is uncontrollable

7 Add q′

A′ to ∆Q ;

8 Remove q
A from ∆Q;

9 Remove q
A from M ;

/* States in M sharing the same estimate as newly inaccessible states need

to be updated. */

10 foreach State q
A in G || H do

11 if q
A is not accessible in M then

12 Ar(A) = Ar(A) ∪ q;
/* Relabel states in M to account for the observer’s updated estimates of

the plant. */

13 foreach State q
A in M do

14 Relabel q
A to q

A\Ar(A) ;

/* Ensure only the accessible portion of M is returned */

15 M = Ac(M);
Algorithm 1: The REFINE algorithm

4.2 Technical developments

Before proving that the REFINE algorithm is correct, we need to develop a few ideas that will be
necessary to connect our state-based formulation of opacity with the string-based confusion of the
adversary. First, we know that REFINE is guaranteed to produce a subautomaton of G in the first
elements of the states of M because it removes states from G || H.

Lemma 3. Given the parallel composition G || H, where G = (Q,Σ, δG, q0, Qm) is a DFA and
H := TΣo

(G) is an observer automaton, and ∆ is a list of states to remove from G || H. Then the
first elements of the states remaining in G || H represent a subautomaton of G.

Proof. See the Appendix.

Second, we note that a subautomaton G′ can be defined by its parent automaton G and the set
of strings that have been removed from L(G). We define an equivalence relation ρ on Σ∗, which
relates strings if they are both in L(G′), were both removed from L(G), or were never in L(G).

Definition 9. The binary relation ρG,G′ on Σ∗ is defined as (s, s′) ∈ ρG,G′ if and only if

(s, s′ ∈ L(G′)) ∨ (s, s′ ∈ L(G) \ L(G′)) ∨ (s, s′ ∈ Σ∗ \ L(G)).
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Third, in REFINE we treat strings the same if they lead to the same state in G and the same
estimate in H. We define an equivalence relation matchΣo on Σ∗ to capture this, where strings are
related if they will receive identical treatment from REFINE.

Definition 10. Given a DFA G and observer automaton H := TΣo
(G). The binary relation

matchΣo
on Σ∗ is defined as

(s, s′) ∈ matchΣo
⇐⇒ (s ≡ s′ mod eq(G)) ∧ (PΣo

(s) ≡ PΣo
(s′) mod eq(H))

and if s /∈ L(G) then (s, s′) ∈ µ if and only if s′ /∈ L(G) as well.

We can show that the partition defined by matchΣo
is equivalent to the partition defined by

eq(G || H).

Lemma 4. Given a DFA G = (Q,Σ, δG, q0, Qm), a set of observable events Σo ⊂ Σ, and an
observer automaton H := TΣo

(G). Then

matchΣo = eq(G || H).

Proof. We will show that two strings s, s′ ∈ L(G) are related in matchΣo if and only if they are
related in eq(G || H).

(s, s′) ∈ matchΣo

⇐⇒ (s ≡ s′ mod eq(G)) ∧ (PΣo(s) ≡ PΣo(s′) mod eq(H) by Definition 10

⇐⇒ δG(q0, s) = δG(q0, s
′) ∧ δH(A0, PΣo(s)) = δH(A0, PΣo(s′)) by Definition 1

⇐⇒ δG || H(
q0

A0
, s) = δG || H(

q0

A0
, s′) by Definition 8

⇐⇒ s ≡ s′ mod eq(G || H) by Definition 1

Finally, we can build on Lemma 4 by showing that if matchΣo
refines ρG,G′ , then we can

produce H ′ by relabelling states in H (i.e., the state transition graph of H ′ is guaranteed be a
subgraph of H’s state transition graph). This condition implicitly enforces that REFINE must remove
states from G || H and thereby treat strings that lead to the same state and estimate identically.
This is a reasonable restriction since we are considering state-based formulations of opacity and
because alternate automaton representations of a language can be used if strings currently related
by matchΣo

should be treated differently.

Lemma 5. Given DFAs G = (Q,Σ, δG, q0, Qm), a set of observable events Σo ⊂ Σ, and an observer
automaton H = TΣo(G). If G′ is a subautomaton of G and H ′ = TΣo(G′), then

(∀s, s′ ∈ L(H))(s ≡ s′ mod eq(H)) ∧ matchΣo ≤ ρG,G′ =⇒ s ≡ s′ mod eq(H ′).

Proof. The proof proceeds by contradiction. Assume that matchΣo
≤ ρG,G′) and that there exists

strings s and s′ in L(H) such that s ≡ s′ mod eq(H) but s 6≡ s′ mod eq(H ′).

s ≡ s′ mod eq(H) =⇒ δH(A0, s) = δH(A0, s
′) (1)

14



We can enumerate exactly those states that appear in δH(A0, s), and therefore that appear in
δH(A0, s

′) as well.

δH(A0, s) ={q ∈ Q | (∃t ∈ L(G))(PΣo(t) = s)(δG(q0, t) = q)}
={q ∈ Q | (∃t ∈ L(G′))(PΣo(t) = s)(δG(q0, t) = q)}∪
{q ∈ Q | (∃t ∈ L(G) \ L(G′))(PΣo(t) = s)(δG(q0, t) = q)}

=δH′(A0, s) ∪ {q ∈ Q | (∃t ∈ L(G) \ L(G′))(PΣo(t) = s)(δG(q0, t) = q)}

For notational convenience, we will denote the second term as

Qρ(s) := {q ∈ Q | (∃t ∈ L(G) \ L(G′))(PΣo
(t) = s)(δG(q0, t) = q)}. (2)

These sets of states are disjoint, which can be shown by contradiction. Assume that there exists a
state q ∈ Q that belongs to the intersection of these two sets.

q ∈ δH′(A0, s) ∩Qρ(s) =⇒ (∃t ∈ L(G′), t′ ∈ L(G) \ L(G′))

(δG(q0, t) = δG(q0, t
′) = q)

(PΣo
(t) = PΣo

(t′) = s) definition of δH′(A0, s) and Qρ(s)

=⇒ (∃t ∈ L(G′), t′ ∈ L(G) \ L(G′))

(δG(q0, t) = δG(q0, t
′) = q)

(δH(A0, PΣo
(t)) = δH(A0, PΣo

(t′))) since PΣo
(t) = PΣo

(t′)

=⇒ (∃t ∈ L(G′), t′ ∈ L(G) \ L(G′))

(t ≡ t′ mod eq(G))

(PΣo
(t) ≡ PΣo

(t′) mod eq(H)) Definition 1

=⇒ (∃t ∈ L(G′), t′ ∈ L(G) \ L(G′))

((t, t′) ∈ matchΣo) Definition 10

=⇒ (∃t ∈ L(G′), t′ ∈ L(G) \ L(G′))

(t, t′ ∈ L(G′) ∨ t, t′ ∈ L(G) \ L(G′)) since matchΣo ≤ ρG,G′

Since L(G′) and L(G) \ L(G′) are disjoint, this is a contradiction. We can therefore say that
δH′(A0, s) ∩Qρ(s) = ∅ and that

δH′(A0, s) = δH(A0, s) \Qρ(s). (3)

For the sake of contradiction, we assumed that s 6≡ s′ mod eq(H ′). By Definition 1 this implies
that δH′(A0, s) 6= δH′(A0, s

′). From (3) we know for s and s′ that

δH′(A0, s) = δH(A0, s) \Qρ(s)
δH′(A0, s

′) = δH(A0, s
′) \Qρ(s′)
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and since we have reasoned that δH(A0, s) = δH(A0, s
′), (1), this implies that Qρ(s) 6= Qρ(s

′).

Qρ(s) 6= Qρ(s
′) =⇒ (∃q? ∈ Q)(q? ∈ Qρ(s))(q? 6∈ Qρ(s′)) WLOG, since eq(H) is symmetric

=⇒ (∃t ∈ L(G) \ L(G′))(PΣo
(t) = s)(δG(q0, t) = q?)

(6 ∃t′ ∈ L(G) \ L(G′))(PΣo
(t′) = s′)(δG(q0, t

′) = q?) by (2)

=⇒ (∃t ∈ L(G) \ L(G′))(PΣo
(t) = s)(δG(q0, t) = q?)

(∃t′ ∈ L(G′))(PΣo
(t′) = s′)(δG(q0, t

′) = q?) since L(G′) ∩ L(G) \ L(G′) = ∅
=⇒ (∃t ∈ L(G) \ L(G′), t′ ∈ L(G′))(PΣo

(t) = s)(PΣo
(t′) = s′)

(t ≡ t′ mod eq(G)) by Definition 1

=⇒ (∃t ∈ L(G) \ L(G′), t′ ∈ L(G′))

(t ≡ t′ mod eq(G || H)) since s ≡ s′ mod eq(H)

=⇒ (∃t ∈ L(G) \ L(G′), t′ ∈ L(G′))

((t, t′) ∈ matchΣo
by Lemma 4

=⇒ (∃t ∈ L(G) \ L(G′), t′ ∈ L(G′))

(t, t′ ∈ L(G′) ∨ t, t′ ∈ L(G) \ L(G′)) since matchΣo
≤ ρG,G′

Again, since we know that L(G′) and L(G)\L(G′) are disjoint, this is a contradiction. This implies
that Qρ(s) = Qρ(s

′), which further implies that s ≡ s′ mod eq(H ′). We have therefore proved
that

(∀s, s′ ∈ L(H))(s ≡ s′ mod eq(H)) ∧ matchΣo
≤ ρG,G′ =⇒ s ≡ s′ mod eq(H ′).

Lemma 5 guarantees us that for any state in H—cell in the partition defined by eq(H)—we can
produce the corresponding state in H ′ by relabelling that state. It goes beyond this too, by telling
us that this relabelling removes exactly those states in Qρ from the state label in H.

4.3 Proof of correctness for the REFINE algorithm

As a first point, the REFINE algorithm is guaranteed to terminate because it works by removing and
relabelling states in the input DFA, G || H. For the first loop, the number of states and transitions
to be inspected is finite and each state and transition can only be inspected once, therefore the loop
terminates. For the second loop, there are a finite number of states to assess for accessibility and
no changes are made to the structure of M . For the third loop, there are a finite number of states
to relabel and relabelling a states in M never requires relabelling another state in M , therefore the
loop terminates. Finally, taking the accessible portion of M requires assessing the accessibility of a
finite number of states, so this operation also terminates.

Secondly, we claim that the REFINE algorithm uses the subobserver relationship to calculate
G′ || H ′ without computing H ′ explicitly. This is formalized as Theorem 2.

Theorem 2. Given the parallel composition G || H and list of states ∆ where: G = (Q,Σ, δG, q0, Qm)
is a DFA; H := TΣo

(G) is an observer automaton; and ∆ is a list of states in G || H. Denote
by G′ the automaton that results in the first elements of G || H once the states in ∆ are made
inaccessible. Then the REFINE algorithm produces G′ || H ′ where H ′ := TΣo(G′).
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Proof. We show that, given G || H, where H is the transformed automaton TΣo(G), and ∆, a list of
states to remove from G || H that produces G′ in the first elements of the states in G, the REFINE

algorithm constructs G′ || H ′.
We assume that ∆ is not equal to the set of states in G || H, otherwise G′ is the null automaton

and we simply need to return G′ || H ′ = null. For the case where ∆ is not equal to the set of
states in G || H, we reason about the elements of the states separately, since these correspond to
the states of G′ and H ′.

First, we argue that the first loop removes the correct states from M to make the states in ∆
inaccessible. Specifically, after the first loop:

a state appears in ∆Q ⇐⇒ (that state appears in ∆) ∨
(that state leads uncontrollably to another state in ∆Q.)

1. =⇒ . States are only added to ∆Q at Line 3 if they are in ∆ and Line 7 if they lead
uncontrollably to a state in ∆Q. So every state in ∆Q meets one of those two conditions.

2. ⇐= . First, Line 3 makes ∆Q equal to ∆ before beginning the loop. Second, for any state q′

A′

that leads uncontrollably to a state q
A in ∆Q, there is an uncontrollable transition that leads

from q′

A′ to q
A . When the iteration for the state q

A is reached in the loop, that transition will

be identified as uncontrollable and q′

A′ will be added to ∆Q.

Since states are never removed from ∆Q, this guarantees that all states in ∆ are in ∆Q and
that all states that lead uncontrollably to a state in ∆Q are in ∆Q as well.

After the first loop is complete, ∆Q contains exactly those states that must be removed to make
the states in ∆ inaccessible. These are exactly the states that are removed from M , since any state
in ∆Q is removed at Line 9 and states are not removed from M anywhere else in REFINE. Therefore
the set of states in ∆ have been made inaccessible and we denote in theorem statement the first
element of the states in M as an automaton G′

Second, because we created G′ by removing states from M = G || H, we know by Lemma 3
that G′ v G. Since G′ v G, H := TΣo

(G), and H ′ := TΣo
(G′), we know from Theorem 1 that

H ′ṽH. We argue that because H ′ṽH, the estimates related to some strings need to be updated
and that this can be accomplished by relabelling the states. We also argue that because the strings
removed from L(G) to produce L(G′) were determined by a set of states in G || H, we have that
matchΣo ≤ ρG,G′ by Lemma 4 and therefore relabelling the estimates from H is all that is required
to produce H ′ (Lemma 5).

The second loop in REFINE produces a list of states Ar(A) for each estimate A. We claim that
a state will be added to Ar(A) if and only if it was in the estimate A to begin with and there are
no longer any other strings in G′ whose projections lead to the states in A:

q ∈ Ar(A) ⇐⇒ (q ∈ A)∧ ((∀s ∈ L(G) | δG(q0, s) = q∧δH(A0, PΣo
(s)) = A)(q 6∈ δH′(A0, PΣo

(s)))).

We will reason about the two directions separately.

1. =⇒ . If q ∈ Ar(A) then it was added at Line 12 because the state q
A was in G || H but no

longer accessible in M at Line 10. Because the state q
Awas accessible in G || H, Lemma 2

tells us that q ∈ A, satisfying the consequent’s first expression. For the consequent’s second

17



expression, we will proceed by contradiction. Assume that there exists a string s ∈ L(G) such
that

δG(q0, s) = q ∧ δH(A0, PΣo
(s)) = A ∧ q ∈ δH′(A0, PΣo

(s)).

Because q ∈ δH′(A0, PΣo(s)), we know that there exists a string s′ ∈ L(G′) such that PΣo(s) =
PΣo

(s′) and δG′(q0, s
′) = q. Since PΣo

(s) = PΣo
(s′), we have that q ∈ δH′(A0, PΣo

(s′)) and
therefore the state q

A is accessible in G′ || H ′. But if q
A is accessible in G′ || H ′, then it would

have been accessible in M at Line 11 since the first elements of the states in M reflect G′.
The state q therefore not have been added to Ar(A) at Line 12, which is a contradiction.

2. ⇐= . Because (q ∈ A) ∧ (∀s ∈ L(G) | δG(q0, s) = q ∧ δH(A0, PΣo(s)) = A) we have that the
state q

A was accessible in G || H. The last expression in the antecedent tells us, however, that
for all these strings s that led to q

A in G || H, (q 6∈ δH′(A0, PΣo
(s))). This tells us that for

such strings s, there does not exist a string s′ ∈ L(G) such that δG′(q0, s
′) = q. This means

that the state q
A must now be inaccessible in M after the first loop. This means that during

the iteration for q
A in the second loop, it is inaccessible and therefore q is added to Ar(A) at

Line 12. Since states are never removed from Ar(A), this guarantees that q ∈ Ar(A).

Third, the third loop correctly updates all of the estimates in M because all states in M are
visited and because all states inM sharing an estimate must be updated in the same way (Lemma 5).

To conclude, after the REFINE algorithm has completed its work, the resulting automaton M is
equal to G′ || H ′ such that

δM (
q0

A0
, s) =

q

A
⇐⇒ δG′(q0, s) = q ∧ δH′(A0, PΣo

(s)) = A.

4.4 Time complexity analysis of the REFINE algorithm

We tie the asymptotic time complexity of the REFINE algorithm to the size of the automaton G || H
with N states, an alphabet of size |Σ|, and, because it is a DFA, an upper bound of N × |Σ|
transitions.

Line 1 is a memory operation where we denote the input G || H by M . This happens in constant
time. Line 2 is also a memory operation, where the set of events to remove from at most N estimates
are initialized to ∅. The complexity class for this operation is O(N). Line 3 is another memory
operation where we denote the input ∆ by ∆Q. This happens in constant time.

The first loop, starting at Line 4, will in the worst case examine every transition in G || H once.
Practically speaking, transitions could be stored in a sorted list with all uncontrolled transitions at
the start of the list. For each transition, at most four constant time operations are performed: ver-
ifying if the transition is uncontrolled; adding the origin state to ∆Q; and removing the destination
state from both ∆Q and M . The complexity class for this loop is O(N × |Σ|).

The second loop, starting at Line 10, will examine every state in G || H once. For each state, at
most two constant time operations are performed: checking if the state is inaccessible; and adding
the first element of the state to Ar(A). The complexity class for this loop is O(N).

The third loop, starting at Line 13 will examine every state in G || H once. For each state,
exactly one constant time operation is performed: relabelling the state’s estimate by removing the
previously stored set Ar(A) from the current estimate. The complexity class for this loop is O(N).
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Line 15 requires returning the accessible portion of M . Practically, the inaccessible components
of M can be removed during the second loop, and so this is a constant time operation.

Taken all together, the complexity class for REFINE is O((N × 3) + (N × Σ)), which simplifies
to O(N × |Σ|). If we consider that the number of states in an automaton is generally larger than
the number of events, this further simplifies to O(N).

4.5 Discussion

The subobserver relationship is a more general form of the subautomaton relationship. We showed
that the subobserver relationship captures how the observer automaton changes to reflect evolutions
in the plant. Specifically, the subobserver relationship allows the parallel composition of a plant
and an observer automaton for that plant, G || H, to be refined without recomputing the observer.
Instead, our method removes transitions in the parallel composition if and only if they must be
disabled by supervisory control and updates the observer’s estimates. The REFINE algorithm im-
plements this procedure and its asymptotic time complexity is linear in the number of states of
G || H.

Although the REFINE algorithm was developed within the framework of the opacity control
problem, it more generally produces the joint behaviour of plant and observer as the plant evolves
over time. In the remainder of this paper we consider the opacity control problem exclusively,
but we note that this approach is applicable to any DES problem where evolving discrete-event
processes are observed including online control, dynamic discrete-event systems, and decentralized
control.

5 Synthesizing Opacity-Enforcing Supervisors

Our opacity control problem formulation is similar to that from other works (see Problem 1). We
assume that that all controllable events are observable, Σc ⊆ Σs, and that the adversary observes
a subset of the events that the supervisor observes, Σa ⊆ Σs. These assumptions allow us to use
Dubreil et al.’s reduction of the general opacity control problem to the opacity control problem with
full observation, i.e. Σs = Σ [7, Proposition 5]. We assume a supervisor-aware adversary, which
implies that the adversary’s view will evolve with G′ = S/G. For simplicity we enforce current-state
opacity.

(a) The näıve method (b) Condensed state estimates [7]

(c) Augmented I-observer [23] (d) The SYNTHESIZE algorithm

Figure 3: Comparing the calculations and data structures for each approach.
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Recalling approaches to the opacity control problem, the näıve, computationally inefficient so-
lution is to apply supervisory control and calculate observers iteratively (Figure 3a) [7]. Condensed
state estimates (Figure 3b) require alternately constructing partial maps and automata; since the
only states in a condensed state estimate are those that were reached by the last event observable
to the adversary, “loosing traces” are calculated at each iteration to determine which states will
reveal a secret [7]. The augmented I-observer (Figure 3c) solves a more general form of the problem
but requires calculating the supremal G-opaque sublanguage, synthesizing a supervisor and refin-
ing both the plant and augmented I-observer at each step. Tong et al. avoid this complication by
restricting themselves to the case of an adversary who is unaware of the supervisor [23].

Our method uses the subobserver property to calculate G′ || H ′ directly from G || H, refining the
parallel composition of plant and adversary view (Figure 3d). Advantages of this method include:
not producing any intermediary structures or languages; capturing the adversary’s beliefs better
than condensed state estimates, thus not requiring “loosing traces” to be calculated; and avoiding
unnecessary calculations compared to the augmented I-observer with a supervisor-aware adversary.

5.1 The SYNTHESIZE algorithm

As in Section 4, we use the parallel composition of G and H := TΣa(G) to track the plant’s evolving
structure along with the adversary’s beliefs about the plant.

Data: Plant G; secret states Qm and non-secret states Q \Qm; alphabet visible to the
adversary Σa ⊆ Σ and alphabet controllable by supervisor Σc ⊆ Σ.

Result: Supervisor S such that S/G is current-state opaque with respect to Qm and Σa.
/* Create the observer automaton and the parallel composition. */

1 H = TΣa(G);
2 M = G || H;
3 while M has marked states do

/* ∆ is the list of states to make inaccessible in M, i.e. the states

that cause opacity to not be enforced. */

4 Set ∆ equal to the set of marked states in M ;
/* Refining M reflects that the adversary changes its view of the plant

based on its ability to reason about the policy enforced by the

supervisor. */

5 M = REFINE(M,∆);
/* Mark any states whose new estimates contain only secret states. */

6 foreach State q
A in M do

7 if A ⊆ Qm then
8 Mark the state q

A in M ;

/* If M is an empty automaton, then there is no valid supervisor for G
that is able to enforce current-state opacity with respect to the

adversary’s observations Σa. */

9 S = M ;
Algorithm 2: The SYNTHESIZE algorithm

Importantly, we mark states in H to capture the scenarios in which no non-secret state can
be confused by the adversary with a true secret state. With a traditional observer automaton, a
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state is marked in H when one of the states that it contains is itself marked in G; in our work,
by contrast, a state in H is marked when all the states it contains are themselves marked in G, as
described in Section 2.1.1. Thus, in our work, if H – the observer – reaches a marked state, then
a string has occurred in G – the plant – that allows the adversary to be sure that a secret state
has been reached. This marking carries through to G || H, where marked states must be made
inaccessible to produce an opacity-enforcing supervisor.

The SYNTHESIZE algorithm (Algorithm 2) enforces current-state opacity by applying supervisory
control as long as the controlled plant composed with the adversary’s estimations of the plant
contains marked states (Lines 3-8), the adversary’s view of the plant is updated (Line 5), and
the new composition of plant behaviour and adversarial belief is checked for current-state opacity
(Lines 6-8).

5.2 Worked example

We will demonstrate how the SYNTHESIZE algorithm works for a concrete example, beginning with
the plant and the initial parallel composition (Figure 4). This plant has two marked states, 6 and
10, an event that the supervisor cannot control, β, and events that the adversary cannot observe,
α and γ.

1

2 3 4 5
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7 8 9 10

γ β

λ

β β

β

γ

α

λ
(a) The original plant, G
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4
3,4,8
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6,9

9
6,9

5
5

10
10β

γ

λ

β

γ

λ

β

α

β

(b) Initial parallel composition, G || H

Figure 4: The initial plant and parallel composition for the worked example.

The initial parallel composition has a single marked state, 10
10 , which is added to ∆ and passed

to REFINE. In order to prevent the state 10
10 from being reached, we must also mark the state 9

6,9 in
M since it leads uncontrollably to our marked state. Removing these two states from M implies
that when the supervisor is in state 8

3,4,8 it will disable the event λ via supervisory control since

the transition 〈 8
3,4,8 , λ,

9
6,9 〉M is no longer defined. Removing these states from M , however, means

that our supervisor will not allow the plant G to reach state 9, which will affect the adversary’s
estimates. Specifically here, when the plant is in state 6, the adversary will no longer confuse the
string in G that led to state 6 with a string in G that leads to state 9 since the latter is now
inaccessible in the plant. This leads to the new parallel composition in Figure 5a, which also has
one marked state, 6

6 .
Removing the state 6

6 from M produces the parallel composition in Figure 5b. This automaton
has no marked states, indicating that it can be used as a supervisor to enforce current-state opacity
in the plant G.
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(a) The second parallel composition, G′ || H′
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(b) The third parallel composition, G′′ || H′′

Figure 5: The parallel compositions computed during the worked example.

5.3 The case of state splitting

As remarked in Section 3, we are not guaranteed that applying supervisory control to G will result
in a subautomaton of G. For example, the observer automaton in Figure 6 illustrates how although
the secret states 8 and 9 are repeatedly visited, the adversary is only able to determine that the
plant is in a secret state once it sees a fourth a. This means that a supervisor can allow state 8 to be
visited up to three times and must therefore enact different control patterns for state 8 depending
on how many times the plant has visited state 8.

1 2 3

4 5 6 7

8 9

a

b

a b

a

b

b

b

a

(a) Plant G, which requires state splitting.

1 (2,3,8) (4,5,8,9) (6,7,8,9) (8,9)

a

aa a a

(b) Observer automaton, H.

Figure 6: States 8 and 9 in G are secret and only a is observable to the adversary. The observer
automaton shows that after observing a fourth a, an adversary will know the plant is in a secret
state. Note that only {8, 9} is marked in H because this is the only state whose constituent states
are all marked in G.

State splitting is required for opacity enforcement when a state can be visited in the prefixes of
strings leading to secret states but only a finite number of times, requiring the supervisor to know
which string led to the state for a particular visit [4, p. 141]. Note that if a state can be visited an
infinite number of times then the supervisor can always enact the same control pattern. Happily,
this state splitting occurs implicitly in Line 2 of the SYNTHESIZE algorithm when the first parallel
composition is constructed (Figure 7). Because a state that requires splitting can only be safely
visited a finite number of times, it is possible to transform any DFA, G, into a language-equivalent

22



DFA, Ĝ, by replicating the original state for each time that it can be safely visited.
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Figure 7: Continuing from Figure 6, the first parallel composition inherently constructs the needed,
language-equivalent automaton to represent the plant.

In fact, taking only the first element of the states in G || H’s state transition diagram produces
Ĝ’s state transition diagram. Following this initial transformation, we are then guaranteed that G′

will be a strict subautomaton of Ĝ and the SYNTHESIZE algorithm can proceed from there. We note
that this state splitting is not an artifact of our proposed method: any method for producing a
minimally restrictive opacity-enforcing supervisor from the original plant G must be able to reason
about the number of times that such states have been reached. The structure G || H embeds this
information by splitting states the necessary number of times; it is therefore the smallest memoryless
structure that can be used to solve the opacity control problem in the context of a supervisor-aware
adversary.

5.4 Proof of correctness for the SYNTHESIZE algorithm

First, the SYNTHESIZE algorithm is guaranteed to terminate. As with the REFINE algorithm, termi-
nation is guaranteed because the automaton G ||H has a finite number of states and the SYNTHESIZE
algorithm makes states inaccessible until M enforces opacity or is the null automaton. Specifically,
if M has any marked states then the algorithm removes states – never adding states – to make the
marked states inaccessible. Since M has a finite number of states, and the algorithm terminates if
M is the null automaton, the algorithm is guaranteed to terminate.

Second, we prove the correctness of SYNTHESIZE through Theorem 3.

Theorem 3. Given a DFA G = (Q,Σ, δG, q0, Qm), set of secret states Qm, set of events visible to
the adversary Σa ⊆ Σ, and set of events controllable by the supervisor Σc ⊆ Σ. Then the supervisor
S produced by the SYNTHESIZE algorithm is a correct and maximally-permissive opacity-enforcing
supervisor for G.

Proof. We begin by proving by contradiction that the supervisor S correctly enforces opacity for
G. We assume that S does not enforce opacity for G. In this case, at least one of the states in
S = M must be marked, reflecting that all of the states in the adversary’s estimate of the plant
are secret states in G. If this was the case, however, then the while loop at Lines 3 to 8 would
have executed again and removed the last controllable transition along each path to this state,
rendering it inaccessible. Therefore, when the SYNTHESIZE algorithm terminates, S = M has no
marked states and it therefore correctly enforces opacity for G.

Next, we prove by contradiction that the supervisor S is maximally-permissive while enforcing
opacity for G. Assume that there exists a supervisor S ′ that correctly enforces opacity for G while
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being more permissive than supervisor S. This implies that there is a transition in G || H, δ?,
that S ′ enables and that S disables. But the only transitions that S disables in G || H are those
that lead directly to a marked state or to a state which leads uncontrollably to a marked state, so
δ∗ must either lead directly or uncontrollably to a marked state. Therefore, S ′ does not correctly
enforce opacity for G.

5.5 Time complexity analysis of the SYNTHESIZE algorithm

Although the SYNTHESIZE algorithm presents a straightforward way of seeing how we can iteratively
generate a list of transitions, ∆, and then refine the parallel composition of plant and adversary’s
view, its asymptotic time complexity is in a higher complexity class than other methods in the liter-
ature. We therefore present Algorithm 3, which embeds the REFINE algorithm into the SYNTHESIZE

algorithm in a computationally efficient manner. We tie the asymptotic behaviour of Algorithm 3
to the input of interest, the automaton G with |Q| states and an alphabet of size |Σ|.

Data: Plant G; secret states Qm and non-secret states Q \Qm; alphabet visible to the
adversary Σa ⊆ Σ and alphabet controllable by supervisor Σc ⊆ Σ.

Result: Supervisor S such that S/G is current-state opaque with respect to Qm and Σa.
/* Initialize the algorithm. */

1 H = TΣa
(G) ;

2 M = G || H;
3 Produce H, a hash table with adversary estimates as keys and states of M as values ;
4 foreach marked state in M , m = q

A do
5 foreach transition leading into m, t = 〈m′, σ,m〉M do
6 if σ ∈ Σuc then the transition t is uncontrollable
7 Mark m′ in M ;

8 Remove the state m from M ;
9 Go to the key A in H and replace it with A \ {q};

10 if A \ {q} ⊆ Qm then
11 Mark all states in the hash table slot indexed by H(A \ {q}) ;

12 S = M ;
Algorithm 3: An computationally efficient implementation of the SYNTHESIZE algorithm

Initializing the algorithm, Lines 1-3, requires constructing the adversary’s view, H = TΣa(G),
and the parallel composition of G || H. The time complexity of this process is established to be
O(|Q| × 2|Q|). The production of the hash table H requires an operation for each |Q| state in M
as well and in practice it can be constructed alongside the parallel composition.

The outer loop iterates through the marked states in M , Lines 4 to 11. This loop will run a
variable number of times, but we will be able to assess the loop’s complexity by establishing upper
bounds for each of the lines inside this loop. First, the loop responsible for inspecting transitions
in M , Lines 5-7, visits each transition in M at most once and at most one constant time operation
is performed. This is guaranteed because each visited transition is visited because its destination
state is marked. Because that destination state will be removed at Line 8 of the current iteration,
the transition in question will not be visited again. Lines 5-7 therefore have an asymptotic time
complexity over the algorithm’s whole run time of O(|Q|×2|Q|×|Σ|). Second, the lines responsible
for processing marked states in M , Lines 8-11 consists of up to four operations. Removing the state
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m from M has a constant time complexity; because each state in M can be removed at most once
this line has an asymptotic time complexity over the algorithm’s whole run time of O(|Q| × 2|Q|).
Updating the hash table key similarly has a constant time complexity and can only occur once per
state in M . This again leads to an asymptotic time complexity over the algorithm’s whole run time
of O(|Q|×2|Q|). Finally, checking if the new estimate consists of solely secret states (Line 10) takes
at most |Qm| checks and then marking states in the hash table slot (Line 11) takes constant time
by state. Since every state can only be marked once over the algorithm’s whole run time, this again
leads to an asymptotic time complexity of O(|Q| × 2|Q|).

Taken together, the asymptotic time complexity of Algorithm 3 is O(|Q| × 2|Q| × |Σ|). Since
in many problems the size of the alphabet does not grow and is much smaller than the size of the
state space, we can consider |Σ| as a constant and reduce this time complexity to O(|Q| × 2|Q|).
Our result is in keeping with the exponential time required for computing an observer automaton
and we note that there is no algorithm for verifying current-state opacity for a system G whose
time complexity is polynomial in the number of states in G [25].

5.6 Discussion

We have demonstrated how our method for refining parallel compositions of plant and observer can
be used to synthesize an opacity-enforcing supervisor. The SYNTHESIZE algorithm implements this
procedure in a direct manner and Algorithm 3 trades a small increase in memory usage to reduce
the asymptotic time complexity to O(|Q| × 2|Q|) where |Q| is the number of states in the original
plant.

We showed two examples to demonstrate how our algorithm works. The first example high-
lighted the interplay between enacting supervisory control and enforcing opacity when faced with a
supervisor-aware adversary: multiple refinements of the automaton G || H may be required before
an output is produced that can be used as an opacity-enforcing supervisor. The second example
showed how our approach inherently addresses splits states when a secret state can be safely visited
only a finite number of times without revealing the system secret. Recalling the two methods in
the literature that are most similar to ours, we note that Algorithm 3 offers improvements on both
approaches. Although each method has the same asymptotic time complexity, [23], our method
produces only a single structure at each step: the parallel composition of plant and adversary
estimate.

The method of condensed state estimates, by contrast, produces both a partial map and an
automaton at every step [7]. Additionally this method requires “loosing paths” to be assessed in
order to verify the opacity property because condensed state estimates account only for states that
the plant might have reached if the last observed event is the last event that occurred in the plant.
Our method does away with the need to reason about these “loosing paths,” which produces two
advantages. First, opacity is immediately verified by the lack of marked states in the output which
permits an opacity-enforcing supervisor to be easily verified by an independent party. Second, the
output’s state labels are semantically meaningful: if a trace occurs in the system then this trace
leads to a state in the parallel composition whose label is the current state of the system and
the states that the observer believes the system could be in. This information can be used by an
engineer or a computer program to make decisions about the system.

The augmented I-observer method, solves a more general problem by allowing Σs and Σa to
be incomparable [23]. Balanced against this, it focuses on the case of a single iteration to enforce
opacity against a non-supervisor-aware adversary. Because this method calculates the supremal
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G-opaque sublanguage of the plant’s language and a supervisor to enforce this language as a spec-
ification, [23], this results in unnecessary calculations when a a supervisor-aware adversary makes
multiple iterations necessary. Our method makes the realistic assumption that Σa ⊆ Σs and ad-
dresses the case of a supervisor-aware adversary with only a single structure computed at each
step.

6 Conclusion

The opacity control problem has been of interest in the DES literature for many years and has been
addressed a number of times. It is a complex problem whose straightforward solution is computa-
tionally expensive. Compared with our method, the solutions to the opacity control problem in the
literature variously require additional computations to deal with the problem in its general form or
use structures that do not intuitively align with the opacity control problem.

This paper introduced and described the subobserver relationship. This relationship is analogous
to the subautomaton relationship and links the observers of a plant whose structure evolves. We
demonstrated the usefulness of the subobserver relationship by using it as the basis of an algorithm
to solve the opacity control problem and we believe that this relationship has broader application in
DES research including online control, dynamic discrete-event systems, and decentralized control.

Time complexity analysis shows that our algorithms are computationally efficient, with Algo-
rithm 3 matching the asymptotic time complexity of previous methods in the literature. We also
demonstrated that our algorithms intuitively solve the opacity control problem under reasonable as-
sumptions. Future research applying these ideas may include relaxing the requirement that Σc ⊆ Σs
for the opacity control problem and applying the subobserver relationship to the iterative refine-
ments necessary when a single supervisor enacts online control or several agents enact decentralized
control over a plant.
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A Omitted Proofs

Proof of Lemma 2. We begin by noting that L(G || H) = L(G) and that because Σo ⊆ Σ, the
alphabet for G || H is Σ as well.

=⇒ . If a state q
A is accessible in G || H, then there exists a string s ∈ L(G || H) such that

δG || H( q0A0
, s) = q

A . By Definition 8, this implies that that δG(q0, s) = q and that δH(A0, PΣo
(s)) =
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A. Because H := TΣo(G), this implies that

((∀s′ ∈ L(G) | PΣo
(s) = PΣo

(s′))(δG(q0, s
′) = q′ ∈ A)).

⇐= . We are given that

(∃s ∈ L(G))(δG(q0, s) = q)((∀s′ ∈ L(G) | PΣo(s) = PΣo(s′))(δG(q0, s
′) = q′ ∈ A)).

We therefore know that δG(q0, s) = q and that δH(A0, PΣo
(s)) = A. By Definition 8, this implies

that δG || H( q0A0
, s) = q

A and therefore q
A is accessible in G || H.

Proof of Lemma 3. According to the definition, G′ is a subautomaton of G, denoted by G′ v G,
if δG′(q′0, s) = δG(q0, s) ∀ s ∈ L(G′).

Denote the first elements of states remaining in G || H as G′. Then we know that

(∀ s ∈ L(G′))(δG′(q0, s) = q =⇒ δG(q0, s) = q)

since any first element of a state that survives in G || H was originally in G. This means that any
string that occurs in G′ leads to the same state that it did in G and therefore that δG′(q′0, s) =
δG(q0, s) ∀ s ∈ L(G′).

We conclude that G′ is a subautomaton of G.
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